
Version 1 Open

The Hex Architecture
David May: February 21, 2014

Background

The architecture described here is specifically designed as a very simple processor
suitable for explaining how a computer works. Further, its instruction set requires
a very small compiler, but is powerful enough to implement substantial programs
including a self-compiling (bootstrapping) compiler for the X language. The main
features of the instruction set are:

• Short instructions are provided to allow efficient access to the stack and
other data regions allocated by compilers; these also provide efficient branch-
ing and subroutine calling.

• The memory is word addressed; however the instructions are all single byte
so instruction addresses refer to a specific byte position within a word.

• The same instruction set can be used for processors with different wordlengths;
the only requirement is that the wordlength is a number of bytes.

• The processor has a small number of registers. Some registers are used for
specific purposes such as accessing the program or building large constants.

• Instructions are easy to decode.

All instructions are 8-bit; each instruction contains 4 bits representing an operation
and 4 bits of immediate data. A special instruction, OPR causes its operand to be
interpreted as an inter-register operation. Instruction prefixes are used to extend
the range of immediate operands and to provide more inter-register operations.

The prefixes are:

• PFIX which concatenates its 4-bit immediate with the 4-bit immediate of
the next 8-bit instruction.

• NFIX which complements its its 4-bit immediate and then concatenates the
result with the 4-bit immediate of the next 8-bit instruction.

David May: February 21, 2014 1



Version 1 Open

The prefixes are inserted automatically by compilers and assemblers.

The normal state of a processor is represented by 4 registers. Two of the registers
are used to hold the sources and destination of arithmetic and logic operations.
Another (the operand register) is used to accumulate the operands of the prefixes.

register use

pc the program counter

oreg the operand register

areg left-hand operand and result of arithmetic
breg right-hand operand of arithmetic

Instruction Issue and Execution

The instruction set has only sixteen instructions and allows a very simple design.

The main components are:

• The registers.

• The A multiplexor, which selects one of areg, pc, oreg and zero.

• The B mutiplexor, which selects one of breg, oreg and zero.

• The arithmetic unit, which combines the operands selected by the A and B
multiplexors.

• The memory, which takes addresses from the arithmetic unit output and data
from areg.

• The result multiplexor, which selects either the memory data output or the
arithmetic unit output; this multiplexor output is supplied to the registers.

• The instruction register, decoder and control matrix.

• The clock and timing generator.

Each instruction is executed in three stages: the instruction is fetched; the pc is
incremented; the instruction is executed.

David May: February 21, 2014 2



Version 1 Open

Instruction set Notation and Definitions

In the following description

mem represents the memory

pc represents the program counter
oreg represents the operand register
areg represents the left-hand operand register
breg represents the right-hand operand register

u4 is a 4-bit unsigned source operand in the range [0 : 15]

David May: February 21, 2014 3



Version 1 Open

Data access

The data access instructions fall into several groups. One of these provides access
via the stack pointer.

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

Access to constants and program addresses is provided by instructions which ei-
ther load values directly or enable them to be loaded from a location in the pro-
gram:

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc + oreg load address in program

Access to data structures is provided by instructions which combine an address
with an offset:

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

Branching, jumping and calling

The branch instructions include conditional and unconditional relative branches.
A branch using an offset in the stack is provided to support jump tables.

BR pc← pc + oreg branch relative unconditional
BRZ if areg = 0 then pc← pc + oreg branch relative zero
BRN if areg < 0 then pc← pc + oreg branch relative negative

BRB pc← breg branch absolute

SVC system call

To call a procedure, the return address can be loaded using the LDAP instruction
and the BR instruction can be used to branch to the procedure entrypoint. The
procedure entry will store the return address; the exit will load this return address
into breg and use a BRB instruction to branch back to the calling procedure.

Expression evaluation

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

David May: February 21, 2014 4



Version 1 Open

Instruction summary

LDAM areg ← mem[oreg] load from memory
LDBM breg ← mem[oreg] load from memory
STAM mem[oreg]← areg store to memory

LDAC areg ← oreg load constant
LDBC breg ← oreg load constant
LDAP areg ← pc + oreg load address in program

LDAI areg ← mem[areg + oreg] load from memory
LDBI breg ← mem[breg + oreg] load from memory
STAI mem[breg + oreg]← areg store to memory

BR pc← pc + oreg branch relative unconditional
BRZ if areg = 0 then pc← pc + oreg branch relative zero
BRN if areg < 0 then pc← pc + oreg branch relative negative

BRB pc← breg branch absolute

ADD areg ← areg + breg add
SUB areg ← areg − breg subtract

SVC system call

David May: February 21, 2014 5



Version 1 Open

#include "stdio.h"

#define true 1
#define false 0

#define i_ldam 0x0
#define i_ldbm 0x1
#define i_stam 0x2

#define i_ldac 0x3
#define i_ldbc 0x4
#define i_ldap 0x5

#define i_ldai 0x6
#define i_ldbi 0x7
#define i_stai 0x8

#define i_br 0x9
#define i_brz 0xA
#define i_brn 0xB

#define i_opr 0xD
#define i_pfix 0xE
#define i_nfix 0xF

#define o_brb 0x0
#define o_add 0x1
#define o_sub 0x2
#define o_svc 0x3

David May: February 21, 2014 6



Version 1 Open

FILE *codefile;

FILE *simio[8];

char connected[] = {0, 0, 0, 0, 0, 0, 0, 0};

unsigned int mem[200000];
unsigned char *pmem = (unsigned char *) mem;

unsigned int pc;
unsigned int sp;
unsigned int areg;
unsigned int breg;
unsigned int oreg;

unsigned int inst;

unsigned int running;

David May: February 21, 2014 7



Version 1 Open

main()
{ load();

running = true; oreg = 0; pc = 0;

while (running)
{ inst = pmem[pc];

pc = pc + 1;
oreg = oreg | (inst & 0xf);

switch ((inst >> 4) & 0xf)
{
case i_ldam: areg = mem[oreg]; oreg = 0; break;
case i_ldbm: breg = mem[oreg]; oreg = 0; break;
case i_stam: mem[oreg] = areg; oreg = 0; break;

case i_ldac: areg = oreg; oreg = 0; break;
case i_ldbc: breg = oreg; oreg = 0; break;
case i_ldap: areg = pc + oreg; oreg = 0; break;

case i_ldai: areg = mem[areg + oreg]; oreg = 0; break;
case i_ldbi: breg = mem[breg + oreg]; oreg = 0; break;
case i_stai: mem[breg + oreg] = areg; oreg = 0; break;

case i_br: pc = pc + oreg; oreg = 0; break;
case i_brz: if (areg == 0) pc = pc + oreg; oreg = 0;break;
case i_brn: if ((int)areg < 0) pc = pc + oreg; oreg = 0;break;

case i_pfix: oreg = oreg << 4; break;
case i_nfix: oreg = 0xFFFFFF00 | (oreg << 4); break;
case i_opr:

switch (oreg)
{ case o_brb: pc = breg; oreg = 0; break;
case o_add: areg = areg + breg; oreg = 0; break;
case o_sub: areg = areg - breg; oreg = 0; break;
case o_svc: svc(); break;
};
oreg = 0; break;

};
}

}

David May: February 21, 2014 8



Version 1 Open

load()
{ int low;

int length;
int n;
codefile = fopen("a.bin", "rb");
low = inbin();
length = ((inbin() << 16) | low) << 2;
for (n = 0; n < length; n++)

pmem[n] = fgetc(codefile);
};

inbin(d)
{ int lowbits;

int highbits;
lowbits = fgetc(codefile);
highbits = fgetc(codefile);
return (highbits << 8) | lowbits;

};

svc()
{ sp = mem[1];

switch (areg)
{ case 0: running = false; break;

case 1: simout(mem[sp + 2], mem[sp + 3]); break;
case 2: mem[sp + 1] = simin(mem[sp + 2]) & 0xFF; break;

}
}

David May: February 21, 2014 9



Version 1 Open

simout(b, s)
{ char fname[] = {’s’, ’i’, ’m’, ’ ’, 0};

int f;
if (s < 256)

putchar(b);
else
{ f = (s >> 8) & 7;

if (! connected[f])
{ fname[3] = f + ’0’;

simio[f] = fopen(fname, "w");
connected[f] = true;
};
fputc(b, simio[f]);

};
};

simin(s)
{ char fname[] = {’s’, ’i’, ’m’, ’ ’, 0};

int f;
if (s < 256)

return getchar();
else
{ f = (s >> 8) & 7;

fname[3] = f + ’0’;
if (! connected[f])
{ simio[f] = fopen(fname, "r");
connected[f] = true;

};
return fgetc(simio[f]);

};
};

David May: February 21, 2014 10


