
Netlist Paths
A TOOL FOR FRONTEND NETLIST ANALYSIS

JAMIE HANLON – GRAPHCORE LTD

Overview

• Context: problem and current solutions
• Overview of Netlist Paths
• Application example 1: critical timing paths
• Application example 2: structural unit tests
• Summary

Context

• Modern RTL designs use a variety of EDA tools to assist in Frontend
development and debug.
• Simulation, linting, power analysis, synthesis, CDC/RDC, formal.

• Custom tooling / flows can provide ways to enhance RTL development.
• Fast feedback to designers improves productivity.
• Standard EDA tools are proprietary (licensed) and TCL is difficult to

interoperate with other languages.
• There is a lack of a simple, generic tool that provides access to a source-

level netlist model.

Current tooling options

• Simulation (eg VCS, Questa, Xcelium)
• TCL interfaces are designed around driving the tool, not providing access to the

underlying models.
• Synopsys NPI for Verdi is a C API for data structure access, but each model has

limitations.
• Synthesis (eg Fusion Compiler, Genus)

• RTL can just be elaborated, but source correspondence is degraded.
• Open-source Verilog tools can be modified and repurposed.

• Parsers: Verible, Slang, Surelog.
• Synthesis: Yosys.
• Simulation: Verilator, Icarus.

Netlist Paths

• Open-source library for source-level netlist analysis.
• Uses Verilator to produce a flattened elaborated XML netlist of a design.
• Design connectivity is represented as a directed graph.
• C++ library implementation for performance.
• CLI for straightforward interactive use.
• Python API for easy integration into custom scripting and infrastructure.
• Deployed successfully at Graphcore, aiding the development of high-

performance ASIC RTL.

https://github.com/jameshanlon/netlist-paths

Example design analysis: adder

Example design analysis: register bank

Netlist Paths features

• Lookup of variables and datatypes.
• Matching exactly or with regular expressions or wildcards.

• Path queries:
• Point to point
• Fan out from a start point
• Fan in to an end point
• Through registers

• Constraints can be added to refine a particular query, to establish
correspondences with other tools.
• Through points must be visited
• Avoid points must not be visited

Application: critical timing paths
Point Ref name Net
----- -------- ---
cts_inv_15095706023/CK->X CKINV_Y2 ctsbuf_net_909743178
ctobgt_inst_716854/CK->X CKINV ctobgt_76
cts_inv_7287698215/CK->X CKINV ctsbuf_net_125742394
cts_inv_7283698211/CK->X CKINV_CB ctsbuf_net_124742393
u_idecode_ibuf_rd_sdata_q_reg_9_/CK->Q2 FSDPRBQM4SS_V2Y u_idecode_ibuf_rd_sdata_q_28_
HFSBUF_231_469368/A->X BUF_SM HFSNET_21922
u_idecode_ctmi_18981/A1->X ND2_CB u_idecode_ctmn_16434
ctmi_293593/A->X ND2B_V1 ctmn_462686
ctmi_164819/A1->X NR2 ctmn_462752
ctmTdsLR_1_510627/B2->X NR3B_Y2 N625606
A434661/B2->X AN3B ctmn_462803
ctmTdsLR_2_721789/A1->X NR3_Y2 copt_net_743354
...
ctmTdsLR_1_721788/A2->X AOI21 N624302
ctmTdsLR_2_645468/A2->X ND2 dec_mx_instr_instrn_3_
ctmTdsLR_2_721674/A1->X NR2 copt_net_743315
ctmTdsLR_1_721660/A->X AN3B ZBUF_209_47
ctmTdsLR_2_729835/A->X OR3B_CB copt_net_746628
ctmTdsLR_1_729834/B->X AO21B u_lsu_i0_op2_mux_2_
ctmi_306787/A1->X AN2 ctmn_484205
ctmTdsLR_3_722448/A2->X OAI21_V1Y2 copt_net_743586
ctmTdsLR_3_635081/A->X INV tmp_net720478
ctmTdsLR_4_635082/A1->X ND4 tmp_net720480
ctmTdsLR_1_722190/C->X AOAI211 u_lsu_i0_op0_mux_3_
u_lsu_e0_addr0_op1_op2_q_reg_16_/D FSDPRBQM4SS_V2Y

Application: critical timing paths
$ netlist-paths xm_tilecpu.netlist.xml \

--ignore-hierarchy-markers --regex \
--from u_idecode_ibuf_rd_sdata_q \
--to u_lsu_e0_op0_q \
--through dec_mx_instr$ \
--through i0_op2_mux

Name Type DType Statement Location
------------------------------------ ---- ------------- --------- ------------------
xm_tilecpu.u_idecode.ibuf_rd_sdata_q REG [69:0] logic ASSIGN xm_idecode.sv:709
...
xm_tilecpu.dec_mx_instr VAR packed struct ASSIGN xm_tilecpu.sv:1045
...
xm_tilecpu.u_mrf_rf.r1_data VAR [32:0] logic ASSIGN xm_mrf_rf.sv:1593
...
xm_tilecpu.dec_instrn_stall VAR logic ASSIGN xm_idecode.sv:1290
...
xm_tilecpu.u_lsu.i0_op0_mux VAR [31:0] logic ASSIGN xm_lsu.sv:602
xm_tilecpu.u_lsu.e0_op0_q REG [31:0] logic

Application: structural unit tests

• Common practice to generate top-level integration RTL.
• Early development is done often without verification support.
• Simulations are expensive to run and slow.
• Netlist paths can be used to implement unit tests to check correct

connectivity in the RTL.
• Python API enables rapid development and integration versus setting up a

TCL-based flow with a synthesis tool.

Application: structural unit tests
xm_top (auto-generated RTL)

u_router_1

intf_a

intf_b

intf_c

intf_d

intf_a

intf_b

intf_c

intf_d

u_router_2

intf_a

intf_b

intf_c

intf_d

intf_a

intf_b

intf_c

intf_d

u_router_<N>

intf_a

intf_b

intf_c

intf_d

u_router_0

intf_a

intf_b

intf_c

intf_d

u_client_1

in
tf

_x

in
tf

_y

in
tf

_x

in
tf

_y

u_client_2

in
tf

_x

in
tf

_y

in
tf

_x

in
tf

_y

u_client_<N>

in
tf

_x

in
tf

_y

in
tf

_x

in
tf

_y

Application: structural unit tests

Application: structural unit tests

• Performing an equivalent task with
Fusion Compiler is slower.

• The Netlist Path’s check can be
added to the CI test suite with
minimal impact on overall runtime.

• Ease of setup and integration with
Python has improved code quality
and engineering productivity.

Complexity Run Time (seconds)
Number of

router instances
Fusion Compiler Netlist Paths

4 252 20
8 295 26

16 345 50
32 463 77
64 721 195

Other use cases

• Checking of patterns to match design objects for QoR reporting.
• CDC/RDC checks to catch simple violations.
• Design documentation.

Summary

• Netlist Paths is a lightweight, open-source tool that provides access
to a source-level netlist.

• Allows simple, custom tooling to be built in Python and easily
integrated into existing Python infrastructure.

• Successfully deployed at Graphcore to provide fast feedback to the
designer.

• These applications have simplified team interactions, increased RTL
quality and designer productivity.

Thank you

Jamie Hanlon and Samuel Kong
• jamie@graphcore.ai
• samuelk@graphcore.ai
• www.graphcore.ai

We’re hiring in Bristol & Cambridge!

mailto:jamie@graphcore.ai
mailto:samuelk@graphcore.ai
http://www.graphcore.ai/

