(2021

DESIGN AND VERIEICATION™

DVOCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Netlist Paths

ATOOL FOR FRONTEND NETLIST ANALYSIS
JAMIE HANLON — GRAPHCORE LTD

GRAFHCORE

Overview

* Context: problem and current solutions

* Overview of Netlist Paths

* Application example 1: critical timing paths
* Application example 2: structural unit tests

* Summary

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Context

 Modern RTL designs use a variety of EDA tools to assist in Frontend
development and debug.
* Simulation, linting, power analysis, synthesis, CDC/RDC, formal.

e Custom tooling / flows can provide ways to enhance RTL development.
* Fast feedback to designers improves productivity.

e Standard EDA tools are proprietary (licensed) and TCL is difficult to
interoperate with other languages.

 Thereis a lack of a simple, generic tool that provides access to a source-
level netlist model.

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Current tooling options

* Simulation (eg VCS, Questa, Xcelium)

e TCL interfaces are designed around driving the tool, not providing access to the
underlying models.

* Synopsys NPI for Verdi is a C API for data structure access, but each model has
limitations.

* Synthesis (eg Fusion Compiler, Genus)
* RTL can just be elaborated, but source correspondence is degraded.

* Open-source Verilog tools can be modified and repurposed.
* Parsers: Verible, Slang, Surelog.
* Synthesis: Yosys.
e Simulation: Verilator, Icarus.

, 2021
EUROPE

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Netlist Paths

* Open-source library for source-level netlist analysis.

e Uses Verilator to produce a flattened elaborated XML netlist of a design.
* Design connectivity is represented as a directed graph.

e C++ library implementation for performance.

e CLI for straightforward interactive use.

 Python API for easy integration into custom scripting and infrastructure.

* Deployed successfully at Graphcore, aiding the development of high-
performance ASIC RTL.

acce//era https://github.com/jameshanlon/netlist-paths

SYSTEMS INITIATIVE
OCTOBER 26-27, 2021

Example design analysis: adder

module adder
#(parameter p_width = 32)(
input logic [p _width-1:0] i_a,
input logic [p_width-1:0] i b,
output logic [p_width-1:0] o_sum,

adder.i_b VAR

output logic 0_Co
);
assign {o_co, o sum} =i a + i b;
endmodule

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Example design analysis: register bank

module pipestage #(parameter p_width=32) (
input logic i _clk,
input logic I T o pipestage-clk VAR
input logic [p_width-1:0] in,
output logic [p_width-1:0] out
)

logic [p_width-1:0] data_q; '
always ff @(posedge i_clk or posedge i_rst) <:E§§§§§g§%§£§i:> <:§§§§§%;§§EE§Z:>

pipestage.i_rst VAR

ASSIGN_DLY

if (1 rst)
data_q <= '0; <:§§MN
else
data_g <= in;
assign out = data_gq; out VAR
endmodule !

A

pipestage.out VAR

: 2021

SYSTEMS INITIATIVE _

OCTOBER 26-27, 2021

Netlist Paths features

* Lookup of variables and datatypes.
 Matching exactly or with regular expressions or wildcards.

e Path queries:
* Point to point
* Fan out from a start point
* Fanin to an end point
* Through registers

* Constraints can be added to refine a particular query, to establish
correspondences with other tools.
* Through points must be visited
* Avoid points must not be visited

202]
DESIGN AND VERIEICATION ™

OCTOBER 26-27, 2021

SYSTEMS INITIATIVE

Application: critical timing paths

cts_inv_15095706023/CK->X
ctobgt inst 716854/CK->X
cts_inv_7287698215/CR->X
cts_inv 7283698211/CK->X
u_idecode_ibuf rd_sdata_q_reg_9_ /CK->02
HFSBUF_ 231 469368/A->X
u_idecode ctmi_18981/Al1->X
ctmi 293593/A->X

ctmi 164819/A1->X
ctmTdsLR 1 510627/B2->X
A434661/B2->X
ctmTdsLR 2 721789/A1->X
ctmTdsLR 1 721788/A2->X
ctmTdsLR 2 645468/A2->X
ctmTdsLR 2 721674/A1->X
ctmTdsLR 1 721660/A->X
ctmTdsLR 2 729835/A->X
ctmTdsLR 1 729834/B->X
ctmi 306787/A1->X
ctmTdsLR 3 722448/A2->X
ctmTdsLR 3 635081/A->X
ctmTdsLR 4 635082/A1->X
ctmTdsLR 1 _722190/C->X
u_lsu _e0_addrO_opl_op2 q_reg_16_/D

SYSTEMS INITIATIVE

CKINV Y2
CKINV
CKINV
CKINV CB
FSDPRBQM4SS_V2Y
BUF_SM
ND2_CB
ND2B_V1
NR2
NR3B_Y2
AN3B

NR3_ Y2
20121

ND2

NR2

AN3B
OR3B_CB
A021B

AN2

OAI21 V1Y2
INV
ND4
AOATI211
FSDPRBQM4SS_V2Y

Net
ctsbuf net 909743178
ctobgt 76
ctsbuf net 125742394
ctsbuf net 124742393
u_idecode_ibuf_rd_sdata_q_28
HFSNET 21922
u_idecode ctmn 16434
ctmn_ 462686
ctmn_462752

N625606

ctmn_ 462803

copt_net 743354
N624302
dec_mx_instr_instrn_3_
copt_net 743315
ZBUF_209_47

copt_net 746628
u_lsu_i0_op2_mux_ 2 _
ctmn_ 484205
copt net 743586

tmp net720478

tmp net720480

u _lsu i0 op0 mux 3

202]
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Application: critical timing paths

$ netlist-paths xm tilecpu.netlist.xml \
--ignore-hierarchy-markers --regex \
-—-from u _idecode ibuf rd sdata g \
--to u_lsu e0 op0 g \
--through dec mx instr$ \
-—through i0 op2 mux

Name

Statement Location

xm_tilecpu
xm_tilecpu
xm_tilecpu
xm_tilecpu

xm_tilecpu
xm_tilecpu

SYSTEMS INITIATIVE

.u_idecode.ibuf rd sdata g
.dec_mx instr

.umrf rf.rl data
.dec_instrn stall

.u_lsu.i0 opO0 mux
.u_lsu.e0 op0 g

VAR
VAR
VAR
REG

[69:0] logic
packed struct
[32:0] logic
logic
[31:0] logic
[31:0] logic

ASSIGN
ASSTGN
ASSTGN
ASSTGN

ASSIGN

xm_idecode.sv:709
éﬁ;tilecpu.svle45
xm mrf rf.sv:1593
éﬁ;idecode.SV:129O

Xxm lsu.sv:602

202]
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Application: structural unit tests

e Common practice to generate top-level integration RTL.
* Early development is done often without verification support.
* Simulations are expensive to run and slow.

* Netlist paths can be used to implement unit tests to check correct
connectivity in the RTL.

* Python API enables rapid development and integration versus setting up a
TCL-based flow with a synthesis tool.

SYSTEMS INITIATIVE

Application: structural unit tests

SYSTEMS INITIATIVE

xm top (auto-generated RTL)

intf 2 eess—fp- intf_a

intf b eem——]p intf b

u_router 0 u_router_1

intf C < intf c

intf_d <e—intf_d

intf 2 ees——]p intf a

1

intf b ey intf b

intf C < intf c

u_router_ 2

intf 2 ce—p -

H

Iintf D em——p =

intf C <— -

intf d < — -

intf_y <m———intf y

u_client 1

intf y ey intf y

u_client 2

- oc—p intf_a

* oc—— intf b

LS u_router <N>

intf_y

intf x ee———1]p intf x
INtE_Y < —

u_client <N>

202]
DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITION

OCTOBER 26-27, 2021

Application: structural unit tests

import py_netlist_paths

Enforce signal names must match exactly.
py_netlist_paths.Options.get_instance().set_match_exact()

Allow start and end points to be at nets rather than registers.
py_netlist paths.Options.get_instance().set_restrict_start_points(False)
py_netlist_paths.Options.get_instance().set_restrict_end_points(False)

Load the netlist XML.

netlist = py netlist_paths.Netlist('xm_top.netlist.xml")

for i in range(N - 1):

Check the router is connected to the next router along.

for signal in intf_a + intf b + intf _c + intf _d:
Construct hierarchical paths to the signals.
point_a = f'xm_top.u_router_{i}.{signal}"’
point_b = f'xm_top.u_router_{i+l1}.{signal}’
Create a waypoint object for the start and end points.
waypoint = py netlist paths.Waypoints(point_a, point_b)
Check that the two points are connected together as expected.
assert netlist.path_exists(waypoint)

: 2021
EUROPE

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Application: structural unit tests

* Performing an equivalent task with
Fusion Compiler is slower.

e The Netlist Path’s check can be
added to the Cl test suite with
minimal impact on overall runtime.

* Ease of setup and integration with
Python has improved code quality
and engineering productivity.

Complexit
Number of

router instances

Run Time (seconds)

Fusion Compiler

252
295
345
463
721

Netlist Paths

20
26
50
77
195

SYSTEMS INITIATIVE

OCTOBER 26-27, 2021

Other use cases

* Checking of patterns to match design objects for QoR reporting.
 CDC/RDC checks to catch simple violations.
* Desigh documentation.

SYSTEMS INITIATIVE

Summary

* Netlist Paths is a lightweight, open-source tool that provides access
to a source-level netlist.

* Allows simple, custom tooling to be built in Python and easily
integrated into existing Python infrastructure.

» Successfully deployed at Graphcore to provide fast feedback to the
designer.

* These applications have simplified team interactions, increased RTL
quality and designer productivity.

SYSTEMS INITIATIVE

Thank you

Jamie Hanlon and Samuel Kong
* jamie@graphcore.ai

* samuelk@graphcore.ai

e www.graphcore.ai

We’re hiring in Bristol & Cambridge! GRAF'HCORE

SYSTEMS INITIATIVE

mailto:jamie@graphcore.ai
mailto:samuelk@graphcore.ai
http://www.graphcore.ai/

